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A set of necessary and sufficient conditions for the existence and uniqueness of a
solution to the problem of interpolation at equidistant points by a sum of
exponential functions is given. Simultaneously a simple method for constructing the
solution is developed. The confluent interpolation problem in which all the points of
interpolation coincide is dealt with similarly. Integral representations for the
solutions to both problems are given and a limit result is proved.

1. INTRODUCTION

Suppose the function f(x) is to be approximated by a sum of exponential
functions

n

u(x) = '\' U ·eU1x,
..... 1
j=1

(1.1)

where the u j and OJ are unknown parameters to be determined by the inter­
polation conditions

c/ =f(xo+ ih) = u(xo+ ih), i = 0, 1,..., 2n - 1. (1.2)

Substituting (1.1) in (1.2), and defining iij = ujeUjXO and 'j = eUjh, j = 1,... , n,
we have

n

c· = '\' iij'~'I _ J

j=1

i = 0, 1,... , 2n - 1. ( 1.3)

These equations have been solved for the iij and '1 by Prony [7], and the
relation of Prony's method of solution with the (n - lin) Pade approximant
Fn_1.n(Z) to the power series F(z) = L.:~o I c/z/ has been shown by Weiss
and McDonough [8]. It turns out that the 'j are the reciprocals of the poles
of Fn_l,n(z) if Fn_I,n(z) has simple poles.
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INTERPOLATION BY EXPONENTIAL FUNCTIONS 195

Prony's method is discussed in several books on numerical analysis, e.g.
Hildebrand [3, pp.378-386], Lanczos [6, pp. 272-280], Hamming
[2, pp. 62~627]. Some theoretical aspects of the interpolation problem,
when the function f(x) is completely monotonic, have been dealt with by
Kammler [4].

Prony's method cannot be applied if Fn_l,n(z) has multiple poles. In this
case it turns out that u(x) as given in (1.1) does not exist. The interpolation
problem, however, may have a solution provided u(x) is modified in an
appropriate manner, and this is the subject of the present work. With this
modification we give a set of necessary and sufficient conditions for the
existence and uniqueness of the solution to the interpolation problem, and
simultaneously give a simple method for constructing it. Later we do the
same for the confluent interpolation problem, in which all the points of inter­
polation coincide. Under certain cnditions, we prove that the solution to the
confluent interpolation problem is the limit of that of interpolation at
equidistant points when the distance between them tends to zero.

Since both problems are ultimately connected with Pade approximants, we
start with them.

2. PADE ApPROXIMANTS

Let
00

g(z) = ~ C;ZI
;=0

(2.1 )

be a formal power series. The (min) entry in the Pade table of (2.1), if it
exists, is defined as the rational function

bo= 1, (2.2)

such that the Maclaurin series expansion of gm.n(z) in (2.2) agrees with the
formal power series in (2.1) up to and including the term cm+nzm+n, i.e.,

g(z) - gm.n(z) = O(zm+n+ I) as z -+ O. (2.3)

For the subject of the Pade table as defined above, see Baker fl, Chaps.
1,21·

It can be verified that for there to be a solution it is necessary and
sufficient that the equations

min(i.n)

L cl_1bj=O,
1=0

i=m+ 1,...,m+n, (2.4)
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have a solution with bo = 1. Once the bj have been determined, the a i can be
computed from

minU.n)

a·= '\' c bI ~ i-j J'
j=O

i = 0, I,..., m. (2.4a)

Although Pm.n(z) and Qm.n(z) in (2.2) may be non-unique, the fraction
gm.n(z) is unique, as stated in the following theorem.

THEOREM 2.1. Ifgm.n(z) exists, it is unique. I
For a proof of this see Baker [I, p. 8].
We shall now concentrate on the approximations gn-I,n(Z) since these are

relevant to the problem of interpolation described in the previous section.

DEFINITION 2.1. A rational function v(z) is said to have property R if its
numerator polynomial has degree strictly .less than that of its denominator
polynomial, i.e., if limz~oc, v(z) = 0.

If gn-l.n(Z) has property R, then after cancelling common factors from the
numerator and denominator, we can express gn-l.n(z) as

(2.5)

where the degree of P(z) is strictly less than that of Q(z), and the degree of
Q(z) is n', for some n' ~ n. Let z1'"'' Zs be the zeros of Q(z) of multiplicities
fJ." ...,fJ.s respectively, so that L:.J=IfJ.j=n'. Since bo = I, Zj*'O for all j.
Then, for some constants AJ,k' I ~k~fJ.j' I ~j~s, gn-I,n(Z) has the
following unique partial fraction expansion:

(2.6)

THEOREM 2.2. Let g(z) and its (n - lin) Pade approximant gn_I,n(z) be
given by (2.1) and (2.6), respectively. Then the parameters Zj and AJ

•k in
(2.6) satisfy the set of non-linear equations

where

c.= f ~ (_I)k (k+i-I ) Aj,k
I ~ ~ k _ I Z~+i'j=1 k=1 J

i=0,1,...,2n-l, (2.7)

(~ ) = I, (
t ) = t(t - I) ... (t - r + I) ,
r r!

r=I,2,.... (2.8)
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Proof Expanding gn-t,n(z) as, given in (2,6), in its Maclaurin series, we
obtain

Upon using the fact that

(2.10)

(2.11 )

in (2.9), and recalling (2.3), we obtain (2.7). I
We now state the converse of Theorem 2.2,

THEOREM 2.3. Let co' c to ..., c2n - t be given numbers. Let sand lij'
j = 1,... , s, be positive integers such that I:.j= tlij ~ n. Suppose that Zj =1= 0,
Aj,k' 1~ k ~lij' 1~j ~ s, are the solution to the set of non-linear equations
given in (2.7).

Then the rational function

s Il} A
v(z) = '\')' j,k

t~t k'"::l (z - Zj)k

is simply the (n - lin) Pade approximant to the power series I:.;~o tCiZ i.
Consequently, this Pade approximant has property R.

Proof Identical to that of Theorem 2.2. I

COROLLARY. Given co' Cto... , c2n _ to there is at most one choice of the
integers lito..., lis with I:.j= tlij ~ n, and the parameters Zj =1= 0, Aj,k'
I ~ k ~ lij' I ~j ~ s, which satisfy (2.7).

Proof Suppose that there is more than one choice. This implies the
existence of more than one (n - lin) Pade approximant to I:.;~ot CjZi,
according to Theorem 2.2. The result now follows from Theorem 2.1 and the
uniqueness of the partial fraction decomposition of rational functions. I

We note that whether the Pade approximant gn-t,n(z) exists and has
property R can be decided by analyzing the C-table of (2.1), and this is
connected with the normality property and the block structure of the Pade
table. Necessary conditions for gn-t,n(z) to exist and to have property R can
be formulated in terms of the C-determinants, but we shall not do this here.
We shall only state that a sufficient condition for gn-t,n(z) to have property
R is that the Pade table of g(z) should be normal. For the definition of
normality, the C-table, and the block structure of the Pade table see Baker
[I, Chap. 2].

640(34(2-8
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3. SOLUTION OF THE INTERPOLATION PROBLEM

DEFINITION 3.1. The sets of functions Un and U~ for h *0 are defined by

(J takes on its principal value, jtl Aj ~ n ( . (3.1 )

THEOREM 3.1. There exists a unique function u(x) in U~, which solves
the interpolation problem

c/ = u(xo + ih), i = 0, 1'00" 2n - I, for some h * 0, (3.2)

if and only if the (n - lin) Pade approximant Fn_I,n<z) to F(z) = L;~o I c.z'
exists and has property R. ifFn -I,n(Z) has the partial fraction decomposition

S IlJ A
F (z) = '\' '\' j,k

n-I,n ~ ~ ( )k'
j= I k= I Z - Zj

(3.3 )

then

where

(

k+ x-xo -I)
u(x) = f ~ E h ,~x-xo)/h (3.4)

.~ ~ J,k k _ I J '
J= I k= I

I ~ k ~ f.lj' I ~j ~ s. (3.5)

Proof Suppose that Fn_l.n(z) exists, and has property R. Then Fn_I,n(z)
has a partial fraction decomposition; assume it is the one given in (3.3). We
would like to show that u(x) in (3.4}-(3.5) solves the interpolation problem.
Now (at,;;b) is a polynomial of degree m in t, as is seen from Eq. (2.8).
Consequently u(x) is in U~. Let us substitute x = Xo + ih, i = 0, 1'00" 2n - I,
in (3.4). Using (3.5), we obtain

S III (k +i-I) A
u(xo+ ih) = '\' 2: (_I)k k _ !~k/,

j=1 k=1 I Zj
i = 0, 1'00" 2n - 1. (3.6)
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But the Zj and Aj,k' being the parameters of the partial fraction decom­
position of Fn_[,n(z), by Theorem 2.2, satisfy the equations

c.= f ~ (_I)k (k+i-I ) Aj,k.
• ............ k I k+. 'J~[ k~[ - Zj

i = 0, I,... , 2n - 1. (3.7)

Thus u(x) satisfies (3.2).
Suppose now that there exists u(x) in U~ that satisfies equations (3.2);

assume that it is given by (3.4). Define the parameters Zj and Aj,k'
I <" k <" Pj' I <"j <" s, through Eqs, (3.5). Equations (3.2) imply that the zJ
and A j,k satisfy Eqs. (3.7). Invoking now Theorem 2,3, we conclude that
Fn_[,n(z) exists and has property R.

As for the uiqueness of u(x), only one set of '/s and Ej,k'S can exist, since
from the corollary to Theorem 2.2, only one set of z/s and Aj,k'S can satisfy
Eqs. (3.7). This completes the proof. I

Note. There does not exist a unique solution to the interpolation problem
above from Un' For if u(x) in (3.4) is a solution from Un' then u(x), which
is obtained from u(x) by adding to arg 'j in (3.4) arbitrary multiplies of 2ni,
is also a solution. Also when Lj~ [Pj <" n - 2, we can add to u(x) in (3.4)
u[(x) = C sin(mn(x - xo)/h), where C is an arbitrary constant and m is an
arbitrary integer, and u(x) +u[(x) solves the interpolation problem, and is in

Un'
The method of construction of u(x) that satisfies the interpolation

conditions in (3.2) is now clear, First we obtain the (n - lin) Pade approx­
imant of F(z) = Lf:o[ c/z/ in its reduced form (and make sure that it has
property R), then find its poles and form its partial fraction decomposition,
and finally form the sum in (3.4) with the help of the relations between the 'J
and Zj and Ej,k and Aj,k'

COROLLARY. If co' CI''''' c2n _[ are real numbers, then u(x) in Theorem
3.1 is a real function, provided none of the zJ is in (-00, 0].

Proof Since co' cl''''' c2n - [ are real, the Pade approximant Fn_[,n(z) is a
real analytic function. Hence if Zj is a complex pole of multiplicity Pj' so is
its complex conjugate. Let zp be the complex conjugate of Zj' Then Ap,k is
the complex conjugate of Aj,k' 1<" k <"Pj =Pp ' If, on the other hand, Zj is a
real pole of multiplicity Pj' then the Aj,k' 1<" k <"Pj' are all real. The rest of
the proof now is obvious. I

4. THE CONFLUENT PROBLEM

So far we have considered the problem of interpolating a functionf(x) by
functions from U~ at equidistant points. We now turn to the confluent
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problem in which the points of interpolation coincide, i.e., Xo= XI = '" =
X Zn -I' Then the problem is to find a function v(x) in Un such that

i = 0, 1,... , 2n - 1. (4.1)

(4.2)

It turns out that the solution to this problem too is closely connected with
Pade approximants as the following theorem shows.

THEOREM 4.1. There exists a unique function v(x) in Un' which solves
the problem described by Eqs. (4.1), if and only if the (n - lin) Pade approx­
imant Vn_l.n(r) to the power series V(r) = r.~:o 1 Yiri exists. When Vn_I,n(r)
exists, Vn_I,ia) =a-1Vn_I,n(a- l

) has property R; let its partial fraction
decomposition be

r t'j B
- _ '\' '\' j,k
Vn_l,n(a)-_ ( )k'

j=1 k=1 a-aj

Then v(x), the solution to the corifluent interpolation problem, is given by

(4,3)

Proof Suppose that Vn_l.n(r) exists. Consequently, Vn_l.n(O) is finite.
Then it can easily be verified that Vn_I,n(a) has property R, and its
denominator polynomial has degree at most n, Let its partial fraction decom­
position be the one given in (4.2). Define V(a)=a-1V(a- I). With the help
of (2.3) it can be shown that

as a 4 oo. (4.4)

As a consequence of (4.4), the parameters aj and Bj,k in (4.2) satisfy the
equations

Yi=± f Bj,k( ~ )aj- k
+

l
, i=0,1,...,2n-1. (4.5)

j=lk=1 k 1

Now we want show that v(x) as given in (4.3) is the required solution. First
of all, it is clear that v(x) is in Un' Next, after some algebra and with the
help of Eqs. (4.5), it can be shown that v(x) satisfies Eqs. (4.1).

It is now possible to prove results similar to Theorem 2.3 and its
corollary. With these results the rest of the theorem can be proved in a
manner analogous to Theorem 3.1. We omit the details. I

COROLLARY. If Yo' Yl''''' YZn-1 are real numbers, then v(x) in Theorem
4.1, if it exists, is a real function.
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Proof Identical to that of the corollary to Theorem 3.1.

5. INTEGRAL REPRESENTATIONS AND A LIMIT THEOREM

201

We now give some contour integral representations for the solutions to the
two interpolation problems that were dealt with in the previous sections.

THEOREM 5.1. Let the function u(x) be as in Theorem 3.1. Then u(x)
has the integral representation

(5.1 )

where C is a simple closed Jordan curve whose interior contains all the poles
of Fn_1,n(z) and such that it never touches the line (-00,0], w =
(x - xo)/h + 1, and Z - W takes on its principal value and has a branch cut
along the line (-00,0].

Proof Substituting the partial fraction decomposition of Fn -I,n(Z) In

(5.1), we have

Now

1 . S 1') A· k

u(x) = - -2. I ~ ~ ( J, l Z -w dz.
'!U'CJ=lk=1 Z-Zj

Z-W= [(z-z)+Zj]-W

= Zj-w(1 + (z - Zj)/Zj]-W

(5.2)

(5.3)

where the last equality holds when Z is sufficiently close to Zj' Substituting
(5.3) in (5.2), and using the residue theorem, we obtain

S 1') ( -w )-w -(k-l)
u(x)=- ~ ~ Aj,kZj k-l Zj ,

J=l k= 1

(5.4)

which, upon using (2.10) and the fact that w = (x - xo)/h + 1, reduces to
(3.4) - (3.5). I
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THEOREM 5.2. The function v(x) in Theorem 4.1 has the integral
representation

1 . -
v(x) = -I V (a) eU(X-Xo) da

2 · n-l.n ,
7Cl • D

(5.5)

where D is a simple closed Jordan curve whose interior contains all the poles
of Vn_l,n(a).

Proof Substituting the partial fraction decomposition of Vn_l.n(a) in
(5.5) and computing residues, (5.5) can be shown to be identical to (4.3). I

The following determinant representations for Fn_1.n(z) and Vn-1.n(a) will
be useful in the remainder of this section.

THEOREM 5.3. If Fn_l.n(z) exists, then it is given by

(5.6)

(5.7)

provided the cofactor of 1 in the first row of the denominator determinant is
non-zero. This will be the case, for example, when the denominator
polynomial ofFn-l.n(z) has degree exactly n, and, apart from a constant, has
no common factor with the numerator polynomial; in this case Fn_1.n(Z) has
property R too. I

For a proof of (5.6) see Baker [1].
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COROLLARY. If Vn_I,n(r) exists, then Vn_I,n(a) is given by

° aOTo(a) an-ZT (a) an-IT (a)n-Z n-I
Yo YI Yn-I Yn
YI Yz Yn Yn+ I

Yn-I Yn YZn-Z YZn-1
Vn_I,n(a) = , (5.8)

a an-I an

Yo Yl Yn-I Yn
YI Yz Yn Yn+ 1

Yn-l Yn YZn-Z YZn-l

where

k
~ . k= 0,1,... , (5.9)Tk(a) = L.. y;/a',
;=0

provided the cofactor of an in the first row of the denominator determinant is
non-zero. This will be the case, for example, when the denominator
polynomial of Vn_"ia) has degree exactly n, and, apart from a constant,
has no common factors with the numerator polynomial; in this case
Vn_I,n(a) has property R too. I

THEOREM 5.4. Let I/I(a) be the polynomial given by

a an

Yn

Yn + I , (5.10)

Yn-I Yn YZn-1

and suppose that I/I(a) has exactly n zeros, which we denote by if;, i = 1,..., n,
counting multiplicities. Let Q(z; h) be the polynomial in z given by

zn zn-l

Co c 1 cn
Q(z; h) = CI Cz cn+ I (5.11)

cn_1 cn CZn _1

Then for h sufficiently close to zero, Q(z; h) has exactly n zeros, which we
denote by z/(h), i = 1"." n, counting multiplicities, with the property that z;(h)
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are continuous in a neighborhood of h = 0, and differentiable at h = 0, such
that

and

dii(h) I - --
dh - a p

h=O

i = 1,..., n,

i = 1,... , n,

(5.12)

(5.13)

with proper ordering.

Proof Let us define the forward difference operators Ll k by Lloa r = an
Llka r = Llk-1a r + 1- Llk-1a" k = 1,2,.... Then it is known that

.<k _ ~ (_I)k-i (k)
LJ ar - ........ • ar + i •

i=O I

If ar = zn-r, r = 0, 1,... , n, then

(5.14)

k=O,I,.... (5.15)

By simple row transformations, with the help of (5.14), it is easy to obtain
from (5.11)

zn zn-I Z

Co c1 cn_ 1 cn
Q(z; h) = Llco Llc1 Llcn-I Llcn (5.16)

Ll n- I Ll n- I LIn-I LIn-ICo c1 cn- 1 cn

. By simple column transformations, and using (5.15), (5.16) can be expressed
as

zn zn-I(l_z) z(l-zy-1 (l - z)n

Co Llco Ll n- 1 LlncoCo
Q(z, h) = Llco Ll 2cO

Llnco Lln+1co (5.17)

Ll n- I Llnco Ll 2n - 2co Ll 2n - 1coCo

Dividing thejth column by hj
- \j = 1,2,..., n + 1, then dividing the first row

by zn, and the ith row by h i
-

2
, i = 2,... , n + 1, and defining

and 17 by

p = 0, 1,..., 2n - 1, (5.18)

17 = (1 - z)/(hz), (5.19)
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we obtain from (5.17)

where ¢(Y/; h) is the polynomial defined by

1 11 11
n

~o ~l ~n

¢(11; h) = ~l ~2 ~n+ 1

~n-l ~n ~2n-l

205

(5.20)

(5.21 )

Recalling that c;=f(xo+ ih), y;=pO(xo), i=O, 1,...,2n-l, and thatf(x)
has 2n - 1 continuous derivatives in a neighborhood of xo, we have, from a
well known result on divided differences,

with f:p = o( 1) as h -+ 0, p = 0, 1,..., 2n - 1. (5.22)

Therefore, by continuity, the coefficients of the polynomial ¢(11; h) =
I:7=o a;(h) 11; are related to those of ",(a) = I:7=o b;a;, by a;(h) = b; +0(1)
as h -+ 0. Since ",(a) has exactly n zeros, bn *" 0; consequently, by continuity,
for h sufficiently close to zero, an(h) *" 0, hence ¢(Y/; h) has exactly n zeros,
if;(h), i = 1,..., n, which can be ordered so that

as h -+ 0, i = 1,..., n, (5.23)

so that if;(h) are continuous in a neighborhood of h = 0. Let us now define

- 1
';(h) = 1 + hif;(h) , i = 1,..., n. (5.24)

The (;(h) are also continuous in a neighborhood of h = 0, and satisfy

Solving (5.24) for if;(h), we obtain

- h _ 1 - ~(h)
11;( ) - h~(h) ,

i = 1,..., n.

i = 1,..., n.

(5.25)

(5.26)

Since limh-+O if;(h) = G; and limh-+O (;(h) = 1 *" 0, we see from (5.26) that
d(;(h)/dhlh=o exists and is given by

d(;(h) I ---
dh - a;,

h=O
i = I,..., n. (5.27)
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Writing now ~(11;h)=an(h)n7=dl1-;iih», and substituting (5.19) and
(5.26) in this expression, we obtain from (5.20)

(5.28)

Hence whenever h is sufficiently close to zero, Q(z; h) has exactly n zeros
Zt(h), and these are simply 't(h), i = 1,... , n.

This completes the proof of the theorem. I
Collecting the results of Theorem 3.1, Theorem 4.1, Theorem 5.3 and its

corollary, and Theorem 5.4, we can state the following result:

THEOREM 5.5. Let the denominator polynomial of Vn_ I.n(o) be ofdegree
exactly n, and assume that, apart from a constant, it has no common factors
with the numerator polynomial. Then

(1) Vn_1,n(0) has property R and is given by (5.8}-(5.9); i.e., its
denominator is '1'(0) in Theorem 5.4. Consequently v(x) exists.

(2) For h sufficiently close to zero, Fn_ l,n(Z) exists, has property R,
and has no poles in (-00,0 I, and is given by (5.6}-(5.7); i.e., its
denominator is Q(z; h) in Theorem 5.4. Consequently, u(x) exists and we
now denote it by u(x; h).

(3) The following limit result is true:

lim u(x; h) = v(x).
h~O

(5.29)

Proof The proofs of (1) and (2) are trivial and we shall omit them. For
the proof of (3) we proceed as follows: Let us apply the column and row
transformations that led from (5.11) to (5.20}-(5.21), to the numerator deter­
minant of Fn-1,n(z) as given in (5.6}-(5.7). Then

where

(5.30)

o
z-n+ 1 ~O

P(l1;h)=-h- ~l

(L1 nS_ 1)/h
n

-
1

~n

~n+l (5.31 )
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S- - n-k-1S ( )
k- Z k Z , k=-I,O,...,n-l, (5.32)

(5.33 )

and (5.19) has been used. In the Appendix to this work it is proved that

z-n+l(L1kS ) k-l

k-l -I =11 k
-

1
'\' 0i/11'.

h ;=0

Since, for h sufficiently close to zero, all the poles of Fn _1.n(Z) are close to
1, Theorem 5.1 applies and u(x; h) is given by (5.1), where C can be taken
to be a circle with its center at z = 1 and radius r < 1. Let us now make the
change of variable Z = e- oh in (5.1). Then, with the help of (5.30), (5.1)
becomes

u(x; h) = _1_ ( e oh P(11; h) eO(X-Xo) da,
2ni )c ~(11; h)

where 11 is given in terms of a by

1 - Z eoh
- 1

11----- hz - h

(5.34)

(5.35)

The contour E can now be taken to be a fixed simple closed Jordan curve
which contains in its interior all the poles of Vn_I,n(a), since the poles of
p(n;h)N(n;h) in the a-plane are approaching those of Vn-1,n(a) as h-..O.
Furthermore, E is positively oriented. Now for a fixed

(5.36)

(5.37)

since 0; -.. y;, i = 0, I,... , 2n - 1, and n-+ a, and hence Z -n + 1(L1 kS_1/hk-1)-+
ak-1Tk_l(a), k= I,...,n, as h-..O, and these limits are attained uniformly in
a on E.

Consequently, from (5.34)

lim u(x; h) = 2
1

. ( lim [e Oh pen; h)] eO(X-xo) da
h-O 7Cl )c h-O ~(11; h) ,

the right hand side being nothing but vex). This completes the proof of the
Theorem. •
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APPENDIX: PROOF OF (5.33)

It is sufficient to show that

k-l

z~n+1LlkS_l= 2.: (LlicO)(Z-l - l)k-,-l
i~O

k-l

= 2.: (Llk-i-1CO)(Z-1 - l)i.
i~O

Now, making use of (5.14), we have

(AI)

(A.2)

Making the substitution i - j = p + 1, and changing the order of summation,
(A.2) becomes

k-l
z-n+lLlks_

1
= 2.: z-p

p~O

Substituting the identity

[
~~ k-i ( k ) ].~ (-1) i Ci - p - 1 •

I~P+ 1

(A.3)

z-p = [1 + (Z-I - 1)]P = ±(P) (Z-l - 1)' (A.4)
r~O r

in (A.3), and changing the order of summation, we obtain

z-n+1LlkS_1 = k~1 (Z-l_ 1)' [II (~) .±(_I)k-i (~) Ci - P- 1].
r~O p~r l~p+1

(A5)

All we have to show now is that the double sum inside the square brackets,
which we now denote by D, is just Llk-r-1co' Making the substitution
q= i -P- 1, and changing the order of summation, this double sum becomes

k-l-r [k-l-
q

( )( k) ]D = ~ cq ~ P (-ll- p
-

q
-

1
•

q~O p~r r q +P + 1

The proof of (5.33) will be complete if we show that

k-l-q ( ) ( k) (k-l-r)
Ar,q= p:;'r ~ q+p+ 1 (_ly-r= q ,

(A6)

o<, q <, k - 1 - r, (A.7)
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Let us define for any a
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m a negative integer. (A.8)

Then it is well known that

for all integers m. (A9)

LEMMA A.1. The A r,q satisfy the 3-term recursion relation

o~ q ~ k - 1 - r, 0 ~ r ~ k - 1. (A. 10)

Proof From (A7), A r + I,q _I is given by

k-q ( ) ( k )A = '\' P -I p-r-I.
r+I,q-1 p.:;:'+1 r+ 1 p+q ( )

Making the substitution p = m + I, (All) becomes

k-q-l(m+I)( k )
Ar+1,q-l= m"5;r r+ 1 m+q+ 1 (_1)m-r.

From (A9) we have

Substituting (AI3) in (A.12), we obtain

k-q-I ( ) ( k )
Ar+"q_,= m"5;r r: 1 m+q+ 1 (_1)m-r

+ k-f-1(m) ( k ) (_1)m-r.
m--:::r r m +q + 1

(All)

(A.12)

(AI3)

(AI4)

Now the second sum is just Ar,q' In the first sum, the first term, i.e., that
with m = r, is zero since (r~ I) = 0, hence this sum actually starts with the
term m = r + 1. Consequently, the first sum is nothing but -Ar+1,q' From
these observations (A. 10) follows. I

LEMMA A2. Equation (A.7) holds for q = k - 1 - r, 0 ~ r ~ k - 1.

Proof By inspection of (A7). I
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LEMMA A.3. Equation (A.7) holds for r = 0, 0 ~ q ~ k - 1.

Proof We have to prove that

k-l ~q ( k (k - 1 )'" )(-lY= ,
p7Q q+p+1 q

That (A. 15) is true follows from the relation

O~q~k-1. (A15)

~ (b) (_1)m = (_l)M (b - 1 ),
m=O m M

see Knuth [5, p. 57, Eq. (18)]. I

for any b, (A.16)

From Lemma A.1 it is clear that A r,q satisfy the 3-term recursion relation
satisfied by (k-~-I) too. From Lemma A2 and Lemma A.3 we see that Ar,q

have the same values as (k-~-I) on two sides of the triangle bounded by the
straight lines r = 0, q = 0, r + q = k - 1, in the q - r plane. These boundary
values together with the 3-term recursion relation are enough for determining
Ar,q uniquely at all grid points of the triangle above. This completes the
proof of (A7).
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